Six-Rowed Spike3 (VRS3) Is a Histone Demethylase That Controls Lateral Spikelet Development in Barley.

نویسندگان

  • G Wilma van Esse
  • Agatha Walla
  • Andreas Finke
  • Maarten Koornneef
  • Ales Pecinka
  • Maria von Korff
چکیده

The complex nature of crop genomes has long prohibited the efficient isolation of agronomically relevant genes. However, recent advances in next-generation sequencing technologies provide new ways to accelerate fine-mapping and gene isolation in crops. We used RNA sequencing of allelic six-rowed spike3 (vrs3) mutants with altered spikelet development for gene identification and functional analysis in barley (Hordeum vulgare). Variant calling in two allelic vrs3 mutants revealed that VRS3 encodes a putative histone Lys demethylase with a conserved zinc finger and Jumonji C and N domain. Sanger sequencing of this candidate gene in independent allelic vrs3 mutants revealed a series of mutations in conserved domains, thus confirming our candidate as the VRS3 gene and suggesting that the row type in barley is determined epigenetically. Global transcriptional profiling in developing shoot apical meristems of vrs3 suggested that VRS3 acts as a transcriptional activator of the row-type genes VRS1 (Hv.HOMEOBOX1) and INTERMEDIUM-C (INT-C; Hv.TEOSINTE BRANCHED1). Comparative transcriptome analysis of the row-type mutants vrs3, vrs4 (Hv.RAMOSA2), and int-c confirmed that all three genes act as transcriptional activators of VRS1 and quantitative variation in the expression levels of VRS1 in these mutants correlated with differences in the number of developed lateral spikelets. The identification of genes and pathways affecting seed number in small grain cereals will enable to further unravel the transcriptional networks controlling this important yield component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley.

Inflorescence architecture of barley (Hordeum vulgare L.) is common among the Triticeae species, which bear one to three single-flowered spikelets at each rachis internode. Triple spikelet meristem is one of the unique features of barley spikes, in which three spikelets (one central and two lateral spikelets) are produced at each rachis internode. Fertility of the lateral spikelets at triple sp...

متن کامل

Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene.

Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two...

متن کامل

Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike ...

متن کامل

Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase

Leaf developmental traits are an important component of crop breeding in small-grain cereals. Surprisingly, little is known about the genetic basis for the differences in barley (Hordeum vulgare L.) leaf development. The two barley row-type classes, i.e., twoand six-rowed, show clear-cut differences in leaf development. To quantify these differences and to measure the genetic component of the p...

متن کامل

P-202: Reduced Expression of JMJD1A Histone Demethylase Gene in Testis Tissues of Infertile Men Referred to Royan Institute

Background: Epigenetic modifications are involved in different cellular processes through regulating chromatin dynamics. histone methylation is an important modification that can be dynamically regulated by histone methyltransferase and histone demethylase enzymes. JMJD1A (also known as JHDM2A and KDM3A) is a histone demethylase specific for H3K9me2/me1. JMJD1A is a key epigenetic regulator tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 174 4  شماره 

صفحات  -

تاریخ انتشار 2017